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Ignore OLAP Data Explosion at great cost. 
 
“… many organisations will never know that they figuratively bought a very 
expensive rowing boat, when they could have traveled business class for less!”  
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Executive Summary: 
 
Introduction: 

The reality of data explosion in multi-dimensional databases is a surprising and 
widely misunderstood phenomenon.  For those about to buy or use an OLAP product, 
it is critically important to understand what data explosion is, what causes it, and how 
it can be avoided, because the consequences of ignoring data explosion can be very 
costly, and in most cases, result in project failure. 

There are very few OLAP vendors who can truly claim to have technically conquered 
the consequences of data explosion. The claims offered by many vendors about how 
they manage data explosion make it very difficult to understand what is actually 
important on this topic and what’s not. 

For example, one of the problems of data explosion is that it results in a massive 
database. The size of the database in one product can literally be hundreds and even 
thousands of times bigger than the same database in another product.  

Rather than admit to the problems of data explosion, the vendor with the massive 
database will argue that his database is handling large data sets, while he will imply 
that the vendor of the smaller database – a database without data explosion - cannot 
address large enterprise datasets.   

The correct analysis should be to compare sizes with equal volumes of base data, but 
because the size of the databases are so profoundly different, prospective customers 
find it hard to believe that such dramatic differences are possible with similar datasets.  

The end result is that organisations often commit to what they erroneously believe is 
the best so-called enterprise solution. This mistake comes at a huge price (see 
consequences of ignoring data explosion). Ironically, in this way, a vendor’s biggest 
weakness (data explosion) becomes their biggest selling point. 

The consequence of ignoring data explosion: 
• Massive databases that are literally hundreds and even thousands of times larger 

than is necessary 
• Expensive hardware is required to process and accommodate exploded data 
• Load and or calculation times that take hours rather than seconds or minutes 
• Large costs to build and maintain these monolithic models 
• The hidden cost of failing to provide timely and relevant enterprise business 

intelligence - there is a great cost associated with the inability to make fast 
business decisions and the negative culture that prevails because of poor 
underlying analytical systems 

• Real or defacto project failure 
 
 



© 2003 SPF Pty Ltd. All Rights Reserved. 
Page 2/8 

Sparsity (antonym – Density): 
“Sparsity” and “sparsity handling” are important concepts worth understanding as a 
precursor to understanding data explosion. 

Input data or base data (i.e. before calculated hierarchies or levels) in OLAP 
applications is typically sparse (not densely populated).  Also, as the number of 
dimensions increase, data will typically become sparser (less dense). 

For example, in a 1 dimensional matrix, you can suppress all zero values and 
therefore have a 100% dense matrix. In a 2 dimensional matrix, you cannot suppress 
zeros if there is a non-zero value in any element in the two dimensions (see figs 1 and 
2). 

 YEAR 
A 10 
C 20 
D 8 
F 15 
Fig 1: 100% dense 
 
 Q1 Q2 Q3 Q4 
A 10 0 0 0 
B 0 20 0 0 
C 0 0 8 0 
D 0 0 0 15 
Fig 2: 25% dense (4 out of 16 data points populated)  

Whilst it is not true in all cases, typically as the number of dimensions in a model 
increases, so does the data sparsity. For example, if you are storing sales data by 
product and by month, it is conceivable that you will sell each product each month 
(100% dense). However, if you were storing sales data, by product, by customer, by 
region, by month, clearly you would not sell each product to every customer in every 
region every month.   

By adding the dimension “gender” to this model, you would double the possible size 
of the cube by storing the data by either of the two variables male or female, but the 
size of the stored data would remain the same.  In this case, by introducing another 
simple dimension, the sparsity will have doubled! 

To provide a practical baseline expectation for sparsity, we researched data sparsity 
on a variety of models with a sample of 7 companies. Each company had a variety of 
models (eg P&L, Balance Sheet, Cash Flow, Sales Analysis, HR/Labour Analysis, 
Budgeting & Forecasting, Industry Specific models etc) with differing dimensions.  

The Industry specific models included insurance claim analysis, “telco” call analysis 
and revenue per user analysis and a medical device company’s sales analysis. A 
detailed summary of our research can be found in Appendix A.  

Our summary findings were as follows: 
1. Data density in all cases was significantly less than 1% - i.e. extremely sparse. 
2.  As the number of dimensions increases, so did the sparsity of the data (models 

reviewed had between 5 and 16 dimensions). 
3.  Extreme sparsity existed in all the “Industry Specific” models (all models had 

density of less than 1 billionth of a %). 
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Sparsity Handling 
Superficially, any multi-dimensional model needs to provide space for every possible 
combination of data points. Since in sparse models most data points are zeros, the 
main issue is how to store all values other than zero values. For example, if the data 
density of a model is 1% and there is no sparsity handling, the resulting model will be 
100 times larger than a model that has perfect sparsity handling. Sparsity handling 
therefore is the efficient storage of very sparse data. 

Don’t confuse poor sparsity handling with data explosion – a common myth: 

It is important not to confuse poor sparsity handling (the inefficient storage of zero 
values) with data explosion. Although sparsity handling is an issue for multi-
dimensional databases, it usually only accounts for differences of less than ten times 
between products.   

Whilst some might say that a difference of size of up to ten times is important, it is 
nowhere near as important as the differences that arise as a result of data explosion. 
As stated previously, these differences can be hundreds and even thousands of times 
between good and bad databases. Also, whilst sparsity handling was more of a 
problem a few years ago, most vendors now have a reasonable solution for this. 

Importantly, this is another classic area of vendor deception.  When challenged on the 
topic of data explosion, some vendors divert the argument to sparsity handling.  
Because both sparsity handling and data explosion are poorly understood, a vendor’s 
handling of sparsity may be incorrectly accepted as an ability to adequately address 
and avoid data explosion. 

Data Explosion - what it is and what causes it –  the facts 
Data explosion is the phenomenon that occurs in multidimensional models where the 
derived or calculated values significantly exceed the base values. There are three main 
factors that contribute to data explosion. 

1. Sparsely populated base data increases the likelihood of data explosion 
2. Many dimensions in a model increase the likelihood of data explosion 
3. A high number of calculated levels in each dimension increase the likelihood of 

data explosion 
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Let’s extend our previous example to explain this.  In fig 3, the 100% dense 1 
dimensional model with 2 levels, has base data that exceeds calculated data in a ratio 
of 4:1. There is no data explosion here. In fig 4, the 25% dense 2 dimensional model 
with 3 levels in 1 dimension, has base data of 4 values that “explodes” to 15 
calculated values. 
 
 YEAR 
A 10 
C 20 
D 8 
F 15 
Total 53 
Fig 3: No data explosion 
 
 YEAR Q1 Q2 Q3 Q4 
A 10 10 0 0 0 
B 20 0 20 0 0 
C 8 0 0 8 0 
D 15 0 0 0 15 
A+B 30 10 20 0 0 
C+D 23 0 0 8 15 
A+B+C+D 53 10 20 8 15 
Fig 4: 3.75 times data explosion 

By increasing sparsity, and/or adding dimensions, and/or adding calculated levels in 
dimensions in the above example, the data explosion rate will increase. 

A frame of reference for data explosion in practice: 
In practice between 5 and 12 dimensions are very common.  Highly sparse models are 
also typical. Density factors of 1% or less are very common and should be assumed 
unless proven otherwise. A typical product dimension has between 4 and 9 levels and 
an account dimension has between 8 and 16 levels.  The other dimensions in typical 
models often have between 2 and 6 levels. 

To provide a practical frame of reference, we researched data explosion in a variety of 
models from our sample of seven companies. A detailed summary of our research can 
be found in Appendix A. Important findings were as follows: 

1. Data density in all cases was significantly less than 1% with extremes in all the 
“Industry Specific” models. 

2. The average number of levels in each model was between 3 and 6.  
3. The highest number of levels for any dimension in each model was between 6 and 

16 levels. 
4. The core “industry specific” models had in all cases between 10 and 16 

dimensions. 
5. The basic P&L models researched each had between 12 million and 40 million 

base data points while the “industry specific” models researched each had between 
80 million and 366 million base data points. 

6. A data explosion factor of between 30 and 500 times was recorded in the basic 
P&L models researched resulting in between 600 million and 21 billion exploded 
data points. 
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7. Precalcualted data exploded to be between 4,000 and 66,000 times larger than the 
base data in the “industry specific” models researched resulting in between 356 
billion and 23,972 billion exploded data points. 

8. After data explosion, the “industry specific” models would require disk storage or 
memory of between 2 and 150 Terabytes versus between only 1 and 5 Gigabytes 
for models unaffected by data explosion. 

9. To load and fully precalculate incremental data, the “industry specific” models 
would require between 11 hours and 242 days versus between only 1 and 27 
minutes for models unaffected by data explosion.  

These results are astounding and hard to believe.  The reality is that many vendors are 
relying on you not believing this.  Furthermore, the above poin ts only begin to suggest 
the limitations experienced by those effected by data explosion.  

Clearly, there are some models that cannot be contemplated if they are precalculated. 
For example, a load and precalculation time of 242 days or even 6.5 days is not 
feasible. As you can see from our research, these models are invariably the important 
“industry specific” models –  such as sales analysis, customer analysis and product 
analysis. These are the real enterprise models with large data sets. 

Furthermore, there are many typical OLAP applications where precalculation times of 
a few hours or even only ten minutes will render these models unpractical. For 
example many “read/write” applications, such as “budgeting and forecasting data 
collection”, “what if analysis” and “scenario modeling”, typically require instant 
calculation and or consolidation of any result in the model. Turn around times of tens 
of minutes or hours are totally unacceptable especially where there are many users. 

Beware of Deceptive Vendor Benchmarks and Explanations! 

Vendors’ attempts to conceal their inability to beat data explosion may now seem 
obvious in light of the causes of this phenomenon. Unfortunately many organisations 
will still never realise that they have been figuratively sold a ve ry expensive “rowing 
boat”, when they could have been traveling “business class” for less. Some of the 
more common and often extremely well camouflaged methods of deception are 
outlined below: 

1. Concealing data explosion flaws by marketing them in such a way as to make 
them appear like strengths: 

(i)  Deliberately confusing sparsity handling with data explosion. 
(ii) Claiming that massive databases reflect an ability to address enterprise 

datasets, rather than honestly comparing database sizes using similar 
based data. 

(iii) Using marketing jargon such as “best practice” and “best of breed” 
without providing any corroboration or evidence of these claims. 
Unless an independent source is sited for claims of superiority, it is 
highly likely that such self-appointed “best practice” and “best of 
breed” products are anything but. 

2. Publishing “benchmarks” or “capability demonstrations” using a combination of 
any or all of the following to avoid revealing evidence of data explosion: 

(i)  Using few dimensions 
(ii) Using non-sparse data 
(iii) Using few calculated levels in dimensions 
(iv)  Using small datasets 
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Conclusion 
1. Beware of deceptive and hollow marketing jargon and claims. 
2. Make every effort to truly understand data explosion and the effects it can have on 

your database. 
3. Do not confuse “sparsity handling” with “data explosion.” 
4. Carefully review vendor “benchmarks” and “capability demonstrations” for 

evidence of an attempt to suppress any of the four main causes of data explosion. 
The following should serve as a useful checklist: 
(i)  Models should have at least 6 or more dimensions 
(ii) Base data density should be 1% or less. 
(iii)  An average of 3 or more calculated levels in all dimensions and 5 or more 

levels in at least 2 of the largest dimensions should be required. At least 1 
dimension should have 1,000 or more elements and another with at least 
100 elements. 

(iv)  Model should have at least 10 million base data points. Ensure this is in 
fact base data and not a total number of fully pre-calculated data points 
(base data of as little as 10 thousand data points can easily result in 10 
million fully pre-calculated data points. The difference in size would be 
1,000 times). 

5. Insist on vendors performing a realistic proof of concept, or benchmark against 
other vendors. Ask for a money back guarantee against the risk of data explosion. 
Any protest will provide a hint as to their capabilities in this area. 

6. Perform reference checks and ask detailed and specific questions during this 
process. For example, if a referee doesn’t know that it is possible to calculate a 
consolidated view of refreshed or changed data in seconds, they might consider 
overnight recalculation of their cubes to be reasonable. If asked the question, how 
is performance, they may respond with “OK”, or “”Good” without purposely 
intending to deceive you.  However, if you ask the specific question “how long 
does it take to recalculate a consolidation after data is refreshed?”, the answer “9 
hours”, will certainly provide a different perspective. 

7. Whilst there are many different OLAP architectures (ROLAP, MOLAP, DOLAP 
etc), any architecture that uses either a partial or full precalculation approach, will 
almost certainly be affected by the consequences of data explosion. 

 
Choose wisely and you can take the ability to fly for granted! 



© 2003 SPF Pty Ltd. All Rights Reserved.  
Page 7/8 

Appendix A 
 

 
 
The first table above contains actual data and metrics from a sample of 7 companies that were using software that does not use partial or complete precalculation and is not 
impacted by data explosion. The second table contains derived metrics calculated to illustrate data explosion with software based on a precalcualtion approach. This table 
illustrates that the first 3 models would not be feasible based on database sizes of in excess on 2.2 terabytes and incremental load times of more than 11 hrs. 
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Definitions and Assumptions: 
 

1. Memory used for base data: We found that 80,000 data points were consistently stored in 1 MB of RAM in the OLAP product we used for this research. We 
therefore derived this number by dividing the number of populated base data points by 80,000. 

2. Number of populated base data Points: To derive this number we counted all or a significant part of the base data in each model, then extrapolated this to reflect a 
full, but reasonably populated model.  For example, if we counted 6 months of data, w e doubled it to reflect 12 months. However we did not use this approach in 
dimensions such as customer, product etc as it would not fairly reflect possible data in the models. 

3. Time in minutes to load base data: We found that we could consistently load 500,000 base data points per minute into the OLAP database. We therefore derived 
this number by dividing the number of populated base data points by 500,000. 

4. Time in minutes to load incremental data specific to this model: The incremental data was specific to each model. For example if the model was changed 
monthly and had 12 months of data, an incremental load would be one twelfth of the time in minutes to load base data. If the model had 12 months and 2 years, an 
incremental load would be one twenty-fourth (12 X 2) of the time in minutes to load base data. 

5. Total possible data points: To derive this number we multiplying together the total number of elements in each dimension. 
6. Sparsity:  The “Number of populated base data Points” divided by “Total possible data points.” 
7. Compound growth factor (CGF): CGF is a term coined by the OLAP Report (http://www.olapreport.com/DatabaseExplosion.htm) used to calculate data 

explosion. It is the data growth factor per dimension. The OLAP Report states that it is reasonable to assume a CGF of about 2 for typical applications, which are 
moderately sparse with semi-clustered data.  We have very conservatively used a CGF of 2 in all our calculations although the OLAP Report would suggest a CGF 
of 2.5 or perhaps even as high as 3 would be reasonable based on these models being extremely sparse and having 6 or more dimensions. 

8. Exploded data: The “Number of populated base data Points” multiplied by “CGF” to the power of the number of dimensions in the model. 
9. Number of times exploded data is larger than base data: “Exploded data” divided by “Number of populated base data Points.” 
10. Memory required for exploded data: We derived the number of data points stored per MB from publ ished white papers siting projects storing precalculated or 

partially precalculated data. We conservatively used the highest derived number, which was 160,000 data points stored per MB. That this was twice the actual size 
we found for unexploded base data, gave us comfort that we were not overstating our case against data explosion. We therefore derived this number by dividing the 
number of “Exploded data” points by 160,000. 

11. Time to load and precalculate: We derived the load and precalculation times from published white papers siting projects loading and precalculating data. We 
found that 508,800 records were being processed per minute. That this was very close to the 500,000 data points per minute for unexploded base data, gave us 
comfort that these were reasonable numbers.  We therefore derived this number by dividing exploded data points by 508,800. 

12. Incremental load and precalculation time specific to this model: The incremental data was specific to each model. For example if the model was changed 
monthly and had 12 months of data, an incremental load would be one twelfth of the time in minutes to load base data. If the model had 12 months and 2 years, an 
incremental load would be one twenty-fourth (12 X 2) of the time in minutes to load base data. 

13. Time to load and precalculate (16 processors 5 partitions): We derived the load and precalculation times from published white papers siting projects loading and 
precalculating data. We found that 5 partitioned parallel processes using a total of 16 CPU’s processed 2,544,000  records per minute. We therefore derived this 
number by dividing exploded data points by 2,544,000. 

14. Incremental load and precalculation time specific to this model (16 processors 5 partitions):  The incremental data was specific to each model. For example if 
the model was changed monthly and had 12 months of data, an incremental load would be one twelfth of the time in minutes to load base data. If the model had 12 
months and 2 years, an incremental load would be one twenty-fourth (12 X 2) of the time in minutes to load base data. 


